If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(81/27^-x)=3^x^2
We move all terms to the left:
(81/27^-x)-(3^x^2)=0
Domain of the equation: 27^-x)!=0We get rid of parentheses
x∈R
-x-3^x^2+81/27^=0
We multiply all the terms by the denominator
-x*27^-3^x^2*27^+81=0
Wy multiply elements
-27x^2-81x^2+81=0
We add all the numbers together, and all the variables
-108x^2+81=0
a = -108; b = 0; c = +81;
Δ = b2-4ac
Δ = 02-4·(-108)·81
Δ = 34992
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{34992}=\sqrt{11664*3}=\sqrt{11664}*\sqrt{3}=108\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-108\sqrt{3}}{2*-108}=\frac{0-108\sqrt{3}}{-216} =-\frac{108\sqrt{3}}{-216} =-\frac{\sqrt{3}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+108\sqrt{3}}{2*-108}=\frac{0+108\sqrt{3}}{-216} =\frac{108\sqrt{3}}{-216} =\frac{\sqrt{3}}{-2} $
| 75c+19=8 | | 8x+73=5x+28 | | 104)-312=6(-6n-4) | | -4n-5+n=7(7-7n)+6(1+6n | | 39.99+0.45x=49.99+0.40x | | $39.99+$0.45x=$49.99+$0.40x | | 9(a-3)=63 | | 7(10)/x=24 | | 1/3x+15=17 | | 9/2y+21/6=4y+5 | | 4x-2x=6+x | | 5.00m-0.65=10.00m+0.45 | | 9x-(2x-4)=39 | | 4n/12+9/12=10/12×n-1 | | -0.01x^2+3.6x-180=0 | | 12(n15)=75 | | 4x+4(6/8)=4(3/4) | | 3(p−4)=6p | | p+3=32 | | —8x•=—56—729 | | 42-x+12=44 | | 65*x=85 | | 0.75a+4=0.50a+8 | | 5x+3=–2x–11 | | x4+16=0. | | Y=30+2x(8) | | 5a-(10+5a)=54 | | -12m+4m–5–9=8m–13m+15–8 | | 8w-6÷2=3 | | 3m–14=7 | | 8w-6/2=3 | | 20x-8-15x-10= |